Extensions 1→N→G→Q→1 with N=C23×C26 and Q=C2

Direct product G=N×Q with N=C23×C26 and Q=C2
dρLabelID
C24×C26416C2^4xC26416,235

Semidirect products G=N:Q with N=C23×C26 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23×C26)⋊1C2 = C13×C22≀C2φ: C2/C1C2 ⊆ Aut C23×C26104(C2^3xC26):1C2416,181
(C23×C26)⋊2C2 = D4×C2×C26φ: C2/C1C2 ⊆ Aut C23×C26208(C2^3xC26):2C2416,228
(C23×C26)⋊3C2 = C24⋊D13φ: C2/C1C2 ⊆ Aut C23×C26104(C2^3xC26):3C2416,174
(C23×C26)⋊4C2 = C22×C13⋊D4φ: C2/C1C2 ⊆ Aut C23×C26208(C2^3xC26):4C2416,226
(C23×C26)⋊5C2 = C24×D13φ: C2/C1C2 ⊆ Aut C23×C26208(C2^3xC26):5C2416,234

Non-split extensions G=N.Q with N=C23×C26 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C23×C26).1C2 = C22⋊C4×C26φ: C2/C1C2 ⊆ Aut C23×C26208(C2^3xC26).1C2416,176
(C23×C26).2C2 = C2×C23.D13φ: C2/C1C2 ⊆ Aut C23×C26208(C2^3xC26).2C2416,173
(C23×C26).3C2 = C23×Dic13φ: C2/C1C2 ⊆ Aut C23×C26416(C2^3xC26).3C2416,225

׿
×
𝔽